Different sources of mycosporine-like amino acids: Natural, heterologous expression, and chemical synthesis/ modifications

Document Type : Review Article


1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran


Background and aims: Due to the increasing incidence of skin cancer and other skin disorders caused by ultraviolet (UV) irradiation, development of more efficient sunscreens seems to be essential. Mycosporine-like amino acids (MAAs) are one group of the natural UV absorbent compounds with sunscreen characteristics that have been the focus of a number of researches. This article aims to introduce different sources of MAAs in order to discuss pros and cons in finding the best way for high-scale MAAs production.
Methods: Scientific databases and search engines including Science Direst and Google Scholar were investigated using “Mycosporine-like amino acid” AND “Production” as main keywords.
Results: An increasing number of publications have been published regard to MAAs in recent 10 years. Publications showed that a wide range of organisms can produce these UV-absorbing compounds, especially under stressful and extreme conditions. Numerous studies has been performed to identify the pharmaceutical and cosmeceutical applications of MAAs. However, it is still challenging to choose the best source for the large-scale production of these compounds. Direct MAAs extraction from natural sources, heterologous production of MAAs using recombinant DNA technology or metabolic engineering, and a few studies of chemical synthesis of MAA derivatives have been reported, so far.
Conclusion: Among various reports, direct extraction from the natural source has got the main position, until now. However, there is an increasing interest on the recombinant production of MAAs in new hosts, with more appropriate features for large-scale production. Nevertheless, it also seems that the chemical synthesis of these compounds is not affordable.


1. Rosic NN. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Mar Drugs. 2019;17(11):638. doi: 10.3390/md17110638. 
2. Geraldes V, Pinto E. Mycosporine-like amino acids (MAAs): biology, chemistry and identification features. Pharmaceuticals (Basel). 2021;14(1):63. doi: 10.3390/ph14010063. 
3. Chen M, Rubin GM, Jiang G, Raad Z, Ding Y. Biosynthesis and heterologous production of mycosporine-like amino acid palythines. J Org Chem. 2021;86(16):11160-8. doi: 10.1021/ acs.joc.1c00368. 
4. Rosic N. Genome mining as an alternative way for screening the marine organisms for their potential to produce UV-absorbing mycosporine-like amino acid. Mar Drugs. 2022;20(8):478. doi: 10.3390/md20080478. 
5. Figueroa FL. Mycosporine-like amino acids from marine resource. Mar Drugs. 2021;19(1):18. doi: 10.3390/ md19010018. 
6. Chen M, Rubin GM, Jiang G, Raad Z, Ding Y. Biosynthesis and heterologous production of mycosporine-like amino acid palythines. J Org Chem. 2021;86(16):11160-8. doi: 10.1021/ acs.joc.1c00368. 
7. Lawrence KP, Long PF, Young AR. Mycosporine-like amino acids for skin photoprotection. Curr Med Chem. 2018;25(40):5512-27. doi: 10.2174/0929867324666170529 124237. 
8. Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP. Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J Exp Biol. 2008;46(1):7-17. 
9. Geraldes V, de Medeiros LS, Lima ST, Alvarenga DO, Gacesa R, Long PF, et al. Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Harmful Algae. 2020;35(2):177-87. doi: 10.4490/algae.2020.35.5.19. 
10. Volkmann M, Gorbushina AA, Kedar L, Oren A. Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett. 2006;258(1):50-4. doi: 10.1111/j.1574- 6968.2006.00203.x. 
11. Nazifi E, Wada N, Yamaba M, Asano T, Nishiuchi T, Matsugo S, et al. Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar Drugs. 2013;11(9):3124-54. doi: 10.3390/md11093124. 
12. Ishihara K, Watanabe R, Uchida H, Suzuki T, Yamashita M, Takenaka H, et al. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light. J Photochem Photobiol B. 2017;172:102-8. doi: 10.1016/j.jphotobiol.2017.05.019. 
13. Carreto JI, Carignan MO. Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs. 2011;9(3):387-446. doi: 10.3390/ md9030387 
14. Klisch M, Richter P, Puchta R, Häder DP, Bauer W. The stereostructure of porphyra‐334: an experimental and calculational NMR investigation. Evidence for an efficient ‘proton sponge’. Helv Chim Acta. 2007;90(3):488-511. doi: 10.1002/hlca.200790052. 
15. Shick JM, Dunlap WC. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol. 2002;64:223-62. doi: 10.1146/annurev. physiol.64.081501.155802. 
16. Rosic NN. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates. Appl Microbiol Biotechnol. 2012;94(1):29-37. doi: 10.1007/s00253-012-3925-3. 
17. Bhatia S, Garg A, Sharma K, Kumar S, Sharma A, Purohit AP. Mycosporine and mycosporine-like amino acids: a paramount tool against ultra violet irradiation. Pharmacogn Rev. 2011;5(10):138-46. doi: 10.4103/0973-7847.91107. 
18. Conde FR, Churio MS, Previtali CM. Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution. Photochem Photobiol Sci. 2007;6(6):669-74. doi: 10.1039/b618314j. 
19. Chrapusta E, Kaminski A, Duchnik K, Bober B, Adamski M, Bialczyk J. Mycosporine-like amino acids: potential health and beauty ingredients. Mar Drugs. 2017;15(10). doi: 10.3390/ md15100326. 
20. Rosic NN. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl Microbiol Biotechnol. 2021;105(19):7053-67. doi: 10.1007/s00253-021-11467-9. 
21. Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res. 2016;16:110-8. doi: 10.1016/j.algal.2016.03.009. 
22. Korteerakul C, Honda M, Ngoennet S, Hibino T, Waditee- Sirisattha R, Kageyama H. Antioxidative and antiglycative properties of mycosporine-like amino acids-containing aqueous extracts derived from edible terrestrial cyanobacteria. J Nutr Sci Vitaminol (Tokyo). 2020;66(4):339-46. doi: 10.3177/ jnsv.66.339.
23. Yoshiki M, Tsuge K, Tsuruta Y, Yoshimura T, Koganemaru K, Sumi T, et al. Production of new antioxidant compound from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chem. 2009;113(4):1127-32. doi: 10.1016/j. foodchem.2008.08.087. 
24. Cheewinthamrongrod V, Kageyama H, Palaga T, Takabe T, Waditee-Sirisattha R. DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines. J Photochem Photobiol B. 2016;164:289-95. doi: 10.1016/j.jphotobiol.2016.09.037. 
25. Rosic NN. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Mar Drugs. 2019;17(11):638. doi: 10.3390/md17110638. 
26. Oren A, Gunde-Cimerman N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett. 2007;269(1):1-10. doi: 10.1111/j.1574-6968.2007.00650.x. 
27. Suh SS, Hwang J, Park M, Seo HH, Kim HS, Lee JH, et al. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar Drugs. 2014;12(10):5174-87. doi: 10.3390/md12105174. 
28. Becker K, Hartmann A, Ganzera M, Fuchs D, Gostner JM. Immunomodulatory effects of the mycosporine-like amino acids shinorine and porphyra-334. Mar Drugs. 2016;14(6):119. doi: 10.3390/md14060119. 
29. Tarasuntisuk S, Patipong T, Hibino T, Waditee-Sirisattha R, Kageyama H. Inhibitory effects of mycosporine-2-glycine isolated from a halotolerant cyanobacterium on protein glycation and collagenase activity. Lett Appl Microbiol. 2018;67(3):314-20. doi: 10.1111/lam.13041. 
30. Kageyama H, Waditee-Sirisattha R. Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: molecular and cellular mechanisms in the protection of skin-aging. Mar Drugs. 2019;17(4):222. doi: 10.3390/md17040222. 
31. Orfanoudaki M, Hartmann A, Alilou M, Gelbrich T, Planchenault P, Derbré S, et al. Absolute configuration of mycosporine-like amino acids, their wound healing properties and in vitro anti-aging effects. Mar Drugs. 2019;18(1):35. doi: 10.3390/md18010035. 
32. Wittenberg JB. The source of carbon monoxide in the float of the Portuguese man-of-war, Physalia physalis L. J Exp Biol. 1960;37(4):698-705. 
33. Orfanoudaki M, Hartmann A, Miladinovic H, Nguyen Ngoc H, Karsten U, Ganzera M. Bostrychines A-F, six novel mycosporine-like amino-acids and a novel betaine from the red alga Bostrychia scorpioides. Mar Drugs. 2019;17(6):356. doi: 10.3390/md17060356. 
34. Schneider G, Figueroa FL, Vega J, Chaves P, Álvarez-Gómez F, Korbee N, et al. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: cosmeceutical applications. Algal Res. 2020;49:101956. doi: 10.1016/j.algal.2020.101956. 
35. Korbee-Peinado N. Fotorregulación y efecto del nitrógeno inorgánico en la acumulación de aminoácidos tipo micosporina en algas rojas [thesis]. University of Malaga; 2003. 
36. Sun Y, Han X, Hu Z, Cheng T, Tang Q, Wang H, et al. Extraction, isolation and characterization of mycosporine-like amino acids from four species of red macroalgae. Mar Drugs. 2021;19(11):615. doi: 10.3390/md19110615. 
37. Ngoennet S, Nishikawa Y, Hibino T, Waditee-Sirisattha R, Kageyama H. A method for the isolation and characterization of mycosporine-like amino acids from cyanobacteria. Methods Protoc. 2018;1(4):46. doi: 10.3390/mps1040046. 
38. Geraldes V, Jacinavicius FR, Genuário DB, Pinto E. Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2020;34 Suppl 3:e8634. doi: 10.1002/ rcm.8634. 
39. Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. Int J Environ Res Public Health. 2021;18(23):12402. doi: 10.3390/ ijerph182312402. 
40. Gharib R, Tabarzad M, Hosseinabadi T. Effect of high salinity on mycosporine-like amino acid production in Desmodesmus sp. Trends Pept Protein Sci. 2020;5:1-6. 
41. Colabella F, Moline M, Libkind D. UV sunscreens of microbial origin: mycosporines and mycosporine- like aminoacids. Recent Pat Biotechnol. 2014;8(3):179-93. doi: 10.2174/1872 208309666150102104520. 
42. Hylander S. Mycosporine-like amino acids (MAAs) in zooplankton. Mar Drugs. 2020;18(2):72. doi: 10.3390/ md18020072. 
43. Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329(5999):1653-6. doi: 10.1126/science.1193637. 
44. Katoch M, Mazmouz R, Chau R, Pearson LA, Pickford R, Neilan BA. Heterologous production of cyanobacterial mycosporine-like amino acids mycosporine-ornithine and mycosporine-lysine in Escherichia coli. Appl Environ Microbiol. 2016;82(20):6167-73. doi: 10.1128/aem.01632- 16. 
45. Miyamoto KT, Komatsu M, Ikeda H. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl Environ Microbiol. 2014;80(16):5028-36. doi: 10.1128/ aem.00727-14. 
46. White JD, Cammack JH, Sakuma K. The synthesis and absolute configuration of mycosporins. A novel application of the Staudinger reaction. J Am Chem Soc. 1989;111(24):8970-2. 
47. Andreguetti D, Stein EM, Pereira CM, Pinto E, Colepicolo P. Antioxidant properties and UV absorbance pattern of mycosporine-like amino acids analogs synthesized in an environmentally friendly manner. J Biochem Mol Toxicol. 2013;27(6):305-12. doi: 10.1002/jbt.21489. 
48. Losantos R, Funes-Ardoiz I, Aguilera J, Herrera-Ceballos E, García-Iriepa C, Campos PJ, et al. Rational design and synthesis of efficient sunscreens to boost the solar protection factor. Angew Chem Int Ed Engl. 2017;56(10):2632-5. doi: 10.1002/anie.201611627.