Study of the protective effect of carvacrol on acetic acid-induced colitis in rats; its oxidative stress and inflammation-modulating role

Document Type : Original Article


Medicinal Plants Research Center, Basic Health Sciences Research Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran


Background and aims: Inflammatory bowel disease is a chronic inflammatory disease whose prevalence is rising worldwide. The treatment-related challenges of this disease have expanded the research on other compounds with suitable therapeutic properties. Carvacrol monoterpene phenolic compound, with a wide range of therapeutic properties, can be an appropriate choice. This study aims to investigate the protective effect of carvacrol on acetic acid-induced colitis in mice, further emphasizing the modulating role of oxidative stress and inflammation.
Methods: This experimental study was conducted on 60 mice divided into six groups. Colitis was induced by intrarectal injection of acetic acid. Five groups of mice received carvacrol at doses of 12.5, 25, 50, and 100 mg/kg and normal saline (1 ml/kg). One group was considered normal (without colitis) and received normal saline (1 ml/kg). The severity of colitis complications was assessed through histopathological examination of colon tissue samples. Furthermore, the malondialdehyde (MDA) level, total antioxidant capacity (TAC), and gene expression of inflammatory markers were investigated in the colon samples. Data analysis was done by PRISM version 8 using one-way ANOVA and Tukey’s test.
Results: The results showed that the induction of colitis caused significant damage to the intestinal mucosal layers, and the administration of carvacrol reduced the severity of this damage. Interestingly, the TAC of all groups that received carvacrol was higher than that of the group that received normal saline (P < 0.05). The administration of carvacrol decreased the MDA level (P < 0.05). In addition, the gene expression of interleukin-1beta (IL-1β), Toll-like receptor 4 (TLR4), and tumor necrosis factor-alpha (TNF-α) reduced after carvacrol administration (P < 0.05).
Conclusion: Carvacrol exerted a protective effect on the acetic acid-induced colitis in mice, probably via inhibiting the inflammatory cascade and modulating oxidative stress.


1. Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:7247238. doi: 10.1155/2019/7247238. 
2. Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol. 2020;35(3):380-9. doi: 10.1111/jgh.14872. 
3. Malekzadeh MM, Sima A, Alatab S, Sadeghi A, Ebrahimi Daryani N, Adibi P, et al. Iranian registry of Crohn’s and colitis: study profile of first nation-wide inflammatory bowel disease registry in Middle East. Intest Res. 2019;17(3):330-9. doi: 10.5217/ir.2018.00157. 
4. Carbonnel F, Jantchou P, Monnet E, Cosnes J. Environmental risk factors in Crohn’s disease and ulcerative colitis: an update. Gastroenterol Clin Biol. 2009;33 Suppl 3:S145-57. doi: 10.1016/s0399-8320(09)73150-1. 
5. Geerling BJ, Dagnelie PC, Badart-Smook A, Russel MG, Stockbrügger RW, Brummer RJ. Diet as a risk factor for the development of ulcerative colitis. Am J Gastroenterol. 2000;95(4):1008-13. doi: 10.1111/j.1572- 0241.2000.01942.x. 
6. Miyake Y, Tanaka K, Nagata C, Furukawa S, Andoh A, Yokoyama T, et al. Dietary intake of vegetables, fruit, and antioxidants and risk of ulcerative colitis: a case-control study in Japan. Nutrition. 2021;91-92:111378. doi: 10.1016/j. nut.2021.111378. 
7. de Cássia da Silveira e Sá R, Andrade LN, de Sousa DP. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18(1):1227-54. doi: 10.3390/molecules18011227. 
8. Ezz-Eldin YM, Aboseif AA, Khalaf MM. Potential anti-inflammatory and immunomodulatory effects of carvacrol against ovalbumin-induced asthma in rats. Life Sci. 2020;242:117222. doi: 10.1016/j.lfs.2019.117222. 
9. de Carvalho FO, Silva É R, Gomes IA, Santana HSR, do Nascimento Santos D, de Oliveira Souza GP, et al. Anti-inflammatory and antioxidant activity of carvacrol in the respiratory system: a systematic review and meta-analysis. Phytother Res. 2020;34(9):2214-29. doi: 10.1002/ptr.6688. 
10. Sehgal P, Colombel JF, Aboubakr A, Narula N. Systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol Ther. 2018;47(12):1597-609. doi: 10.1111/ apt.14688. 
11. da Silva Lima M, Quintans-Júnior LJ, de Santana WA, Martins Kaneto C, Pereira Soares MB, Villarreal CF. Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol. 2013;699(1-3):112-7. doi: 10.1016/j. ejphar.2012.11.040. 
12. Fakhraei N, Javadian N, Rahimian R, Nili F, Rahimi N, Hashemizadeh S, et al. Involvement of central opioid receptors in protective effects of methadone on experimental colitis in rats. Inflammopharmacology. 2018;26(6):1399-413. doi: 10.1007/s10787-018-0538-1. 
13. Melo FH, Venâncio ET, de Sousa DP, de França Fonteles MM, de Vasconcelos SM, Viana GS, et al. Anxiolytic-like effect of carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol. 2010;24(4):437-43. doi: 10.1111/j.1472-8206.2009.00788.x. 
14. Gupta RA, Motiwala MN, Mahajan UN, Sabre SG. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL- 6. J Ethnopharmacol. 2018;219:222-32. doi: 10.1016/j. jep.2018.02.043. 
15. Heidarian E, Rafieian-Kopaei M, Ashrafi K. The effect of hydroalcoholic extract of Allium latifolium on the liver phosphatidate phosphatase and serum lipid profile in hyperlipidemic rats. J Babol Univ Me Sci. 2013;15(4):37-46. [Persian]. 
16. Fathi F, Oryan S, Rafieian-KopaeI M, Eidi A. Neuroprotective effect of pretreatment with Mentha longifolia L. extract on brain ischemia in the rat stroke model. Arch Biol Sci. 2015;67(4):1151-63. 
17. Ahluwalia B, Moraes L, Magnusson MK, Öhman L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand J Gastroenterol. 2018;53(4):379-89. doi: 10.1080/00365521.2018.1447597. 
18. Miao F, Shan C, Shah SAH, Akhtar RW, Geng S, Ning D, et al. The protective effect of walnut oil on lipopolysaccharide-induced acute intestinal injury in mice. Food Sci Nutr. 2021;9(2):711-8. doi: 10.1002/fsn3.2035. 
19. Mahmoud TN, El-Maadawy WH, Kandil ZA, Khalil H, El- Fiky NM, El Alfy T. Canna x generalis L.H. Bailey rhizome extract ameliorates dextran sulfate sodium-induced colitis via modulating intestinal mucosal dysfunction, oxidative stress, inflammation, and TLR4/ NF-ҡB and NLRP3 inflammasome pathways. J Ethnopharmacol. 2021;269:113670. doi: 10.1016/j.jep.2020.113670. 
20. Yin Q, Pi X, Jiang Y, Ren G, Liu Z, Liu H, et al. An immuno-blocking agent targeting IL-1β and IL-17A reduces the lesion of DSS-induced ulcerative colitis in mice. Inflammation. 2021;44(5):1724-36. doi: 10.1007/s10753-021-01449-4. 
21. Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood). 2012;237(5):474- 80. doi: 10.1258/ebm.2011.011358. 
22. Zhang H, Deng A, Zhang Z, Yu Z, Liu Y, Peng S, et al. The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-κB pathway. Pharmacol Rep. 2016;68(3):514-20. doi: 10.1016/j.pharep.2015.12.011. 
23. Nikkhah-Bodaghi M, Darabi Z, Agah S, Hekmatdoost A. The effects of Nigella sativa on quality of life, disease activity index, and some of inflammatory and oxidative stress factors in patients with ulcerative colitis. Phytother Res. 2019;33(4):1027-32. doi: 10.1002/ptr.6296. 
24. Khan MN, Lane ME, McCarron PA, Tambuwala MM. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology. 2018;26(2):561-9. doi: 10.1007/ s10787-017-0364-x. 
25. Bastaki SMA, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem. 2021;476(9):3497-512. doi: 10.1007/s11010-021-04094-5. 
26. Li XX, Chen SG, Yue GG, Kwok HF, Lee JK, Zheng T, et al. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine. 2021;90:153625. doi: 10.1016/j. phymed.2021.153625. 
27. Tian Q, Bravo Iniguez A, Sun Q, Wang H, Du M, Zhu MJ. Dietary alpha-ketoglutarate promotes epithelial metabolic transition and protects against DSS-induced colitis. Mol Nutr Food Res. 2021;65(7):e2000936. doi: 10.1002/ mnfr.202000936. 
28. Somensi N, Rabelo TK, Guimarães AG, Quintans-Junior LJ, de Souza Araújo AA, Moreira JCF, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 2019;75:105743. doi: 10.1016/j. intimp.2019.105743. 
29. Li Y, Xu JZ, Gu CX, Liu GL, Tian K. Carvacrol suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes. J Cell Biochem. 2019;120(5):8169-76. doi: 10.1002/jcb.28098. 
30. Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14(29):3106-19. doi: 10.2174/138161208786404227. 
31. Zhao W, Deng C, Han Q, Xu H, Chen Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int J Mol Med. 2020;46(3):977-88. doi: 10.3892/ijmm.2020.4654. 
32. Riaz M, Al Kury LT, Atzaz N, Alattar A, Alshaman R, Shah FA, et al. Carvacrol alleviates hyperuricemia-induced oxidative stress and inflammation by modulating the NLRP3/NF-κB pathwayt. Drug Des Devel Ther. 2022;16:1159-70. doi: 10.2147/dddt.s343978. 
33. Gupta RA, Motiwala MN, Mahajan UN, Sabre SG. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL- 6. J Ethnopharmacol. 2018;219:222-32. doi: 10.1016/j.jep.2018.02.043. 
34. Dolatabadi F, Abdolghaffari AH, Farzaei MH, Baeeri M, Ziarani FS, Eslami M, et al. The protective effect of Melissa officinalis L. in visceral hypersensitivity in rat using 2 models of acid-induced colitis and stress-induced irritable bowel syndrome: a possible role of nitric oxide pathway. J Neurogastroenterol Motil. 2018;24(3):490-501. doi: 10.5056/jnm17035. 
35. Oliyaei N, Tanideh N, Nasirifar SZ. Application of essential oils in the treatment of inflammatory bowel disease. In: de Oliveira MS, de Aguiar Andrade EH, eds. Essential Oils: Advances in Extractions and Biological Applications. Rijeka: IntechOpen; 2022. p. 139. doi: 10.5772/intechopen.102966.