Treatment of dry eye disease in traditional Persian medicine: A narrative review

Document Type : Review Article


Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran


Background and aims: Dry eye disease (DED) is a globally prevalent disorder due to the loss of homeostasis of the tear film that causes a range of different signs and symptoms. This problem affects visual function and patients’ daily activities and damages physical and psychological health and finally the quality of life while it has no definite cure until now. Thus, developing new medicines and formulations is needed. Meanwhile, traditional Persian medicine as an ancient comprehensive school among the world’s traditional medicine is a good source of active ingredients and formulations.
Methods: Prescribed herbal medicines and related formulations for DED in traditional Persian medicine references including Exir-e-Azam, Tebb-e-Akbari, Moalejat-e-Aghili, and Makhzan-al-Advieh were investigated and analyzed in comparison with recent therapeutic studies.
Results: Our findings show that traditional Persian medicine scientists relied on mucilage-containing materials like psyllium and quince seeds and unsaturated and polyunsaturated plant oils such as sweet almond oil, pumpkin seed oil, and olive oil as principal components for treating DED.
Conclusion: DED treatment in Persian traditional medicine was based on using mucilages and plant oils mainly as ophthalmic drops to keep moisture and lubricate eyelid movement. Moreover, advised medicines were generally in accordance with modern medicine findings and found to have antioxidant, anti-inflammatory, and immunomodulatory activities that can beneficially modulate pathological mechanisms of dry eye disease.


1. Ling J, Chan BC, Tsang MS, Gao X, Leung PC, Lam CW, et al. Current advances in mechanisms and treatment of dry eye disease: toward anti-inflammatory and immunomodulatory therapy and traditional Chinese medicine. Front Med (Lausanne). 2021;8:815075. doi: 10.3389/fmed.2021.815075. 
2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843. 
3. Tsubota K, Pflugfelder SC, Liu Z, Baudouin C, Kim HM, Messmer EM, et al. Defining dry eye from a clinical perspective. Int J Mol Sci. 2020;21(23):9271. doi: 10.3390/ ijms21239271.
4. Baiula M, Spampinato S. Experimental pharmacotherapy for dry eye disease: a review. J Exp Pharmacol. 2021;13:345-58. doi: 10.2147/jep.s237487. 
5. Guo LW, Akpek E. The negative effects of dry eye disease on quality of life and visual function. Turk J Med Sci. 2020;50(Si- 2):1611-5. doi: 10.3906/sag-2002-143. 
6. Al-Mohtaseb Z, Schachter S, Shen Lee B, Garlich J, Trattler W. The relationship between dry eye disease and digital screen use. Clin Ophthalmol. 2021;15:3811-20. doi: 10.2147/opth. s321591. 
7. Şimşek C, Doğru M, Kojima T, Tsubota K. Current management and treatment of dry eye disease. Turk J Ophthalmol. 2018;48(6):309-13. doi: 10.4274/tjo.69320. 
8. Giannaccare G, Ghelardini C, Mancini A, Scorcia V, Di Cesare Mannelli L. New perspectives in the pathophysiology and treatment of pain in patients with dry eye disease. J Clin Med. 2021;11(1):108. doi: 10.3390/jcm11010108. 
9. Aghili Khorasani SMH. Makhzan-al-Advieh. Tehran, Iran: University of Tehran Press; 2008. 
10. Karimi Z, Firouzi M, Dadmehr M, Javad-Mousavi SA, Bagheriani N, Sadeghpour O. Almond as a nutraceutical and therapeutic agent in Persian medicine and modern phytotherapy: a narrative review. Phytother Res. 2021;35(6):2997-3012. doi: 10.1002/ptr.7006. 
11. Ouzir M, Bernoussi SE, Tabyaoui M, Taghzouti K. Almond oil: A comprehensive review of chemical composition, extraction methods, preservation conditions, potential health benefits, and safety. Compr Rev Food Sci Food Saf. 2021;20(4):3344- 87. doi: 10.1111/1541-4337.12752. 
12. Aghili-Khorasani SMH. Moalejat-e-Aghili. Tehran, Iran: Institute of History of Islamic and Complementary Medicine; 2008. 
13. Aazam Khan M. Exir-e-Azam. Tehran, Iran: Iran University of Medical Sciences; 2008. 
14. Labetoulle M, Benitez-Del-Castillo JM, Barabino S, Herrero Vanrell R, Daull P, Garrigue JS, et al. Artificial tears: biological role of their ingredients in the management of dry eye disease. Int J Mol Sci. 2022;23(5). doi: 10.3390/ijms23052434. 
15. Li L, Jin R, Li Y, Yoon HS, Yoon HJ, Yoon KC. Effects of eye drops containing a mixture of 3% diquafosol sodium and tocopherol acetate (vitamin E) on the ocular surface of murine dry eye. Cutan Ocul Toxicol. 2021;40(4):350-8. doi: 10.1080/15569527.2021.1973022. 
16. Adnan M, Gul S, Batool S, Fatima B, Rehman A, Yaqoob S, et al. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J Phytopharmacol. 2017;6(2):133-9. 
17. Ramak P, Mahboubi M. The beneficial effects of Pumpkin (Cucurbita pepo L.) seed oil for health condition of men. Food Rev Int. 2019;35(2):166-76. doi: 10.1080/87559129.2018.1482496. 
18. Siano F, Straccia MC, Paolucci M, Fasulo G, Boscaino F, Volpe MG. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J Sci Food Agric. 2016;96(5):1730-5. doi: 10.1002/jsfa.7279. 
19. Yao Y, Xu B. New insights into chemical compositions and health promoting effects of edible oils from new resources. Food Chem. 2021;364:130363. doi: 10.1016/j. foodchem.2021.130363. 
20. Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM. A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother Res. 2017;31(11):1669-75. doi: 10.1002/ ptr.5909. 
21. Arzani M. Tebb-e-Akbari. Tehran, Iran: Research Institute for Islamic Complementary Medicine; 2005. [Persian]. 
22. Lim TK. Viola odorata. In: Lim TK, ed. Edible Medicinal and Non Medicinal Plants. Dordrecht, Netherlands: Springer; 2014. 
23. Akhbari M, Batooli H, Kashi FJ. Composition of essential oil and biological activity of extracts of Viola odorata L. from central Iran. Nat Prod Res. 2012;26(9):802-9. doi: 10.1080/14786419.2011.558013. 
24. Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, et al. Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochem Rev. 2018;17(5):1091-110. doi: 10.1007/s11101-017-9526-0. 
25. Shi M, Gu J, Wu H, Rauf A, Emran TB, Khan Z, et al. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce-a comprehensive review. Antioxidants (Basel). 2022;11(6). doi: 10.3390/antiox11061158. 
26. Matthäus B, Babiker EE, Özcan MM, Al-Juhaimi FY, Ahmed IAM, Ghafoor K. Changes in fatty acid, tocopherol and sterol contents of oils extracted from several vegetable seeds. J Oleo Sci. 2021;70(11):1607-14. doi: 10.5650/jos.ess21225. 
27. Zhang S, Hu J, Sun Y, Tan H, Yin J, Geng F, et al. Review of structure and bioactivity of the Plantago (Plantaginaceae) polysaccharides. Food Chem X. 2021;12:100158. doi: 10.1016/j.fochx.2021.100158. 
28. Franco EAN, Sanches-Silva A, Ribeiro-Santos R, de Melo NR. Psyllium (Plantago ovata Forsk): from evidence of health benefits to its food application. Trends Food Sci Technol. 2020;96:166-75. doi: 10.1016/j.tifs.2019.12.006. 
29. Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, et al. A comprehensive review on plant-derived mucilage: characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers (Basel). 2021;13(7):1066. doi: 10.3390/polym13071066. 
30. Ji X, Hou C, Guo X. Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae): a review. Int J Biol Macromol. 2019;135:637-46. doi: 10.1016/j.ijbiomac.2019.05.211. 
31. Jimoh MO, Afolayan AJ, Lewu FB. Therapeutic uses of Amaranthus caudatus L. Trop Biomed. 2019;36(4):1038-53. 
32. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al. Coriandrum sativum L.: a review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules. 2021;27(1):209. doi: 10.3390/ molecules27010209. 
33. Sobhani Z, Mohtashami L, Amiri MS, Ramezani M, Emami SA, Simal-Gandara J. Ethnobotanical and phytochemical aspects of the edible herb Coriandrum sativum L. J Food Sci. 2022;87(4):1386-422. doi: 10.1111/1750-3841.16085. 
34. Obadi M, Sun J, Xu B. Highland barley: chemical composition, bioactive compounds, health effects, and applications. Food Res Int. 2021;140:110065. doi: 10.1016/j. foodres.2020.110065. 
35. Saikia D, Hassani MI, Walia A. Goat milk and its nutraceutical properties. Int J Appl Res. 2022;8(4):119-22. doi: 10.22271/ allresearch.2022.v8.i4b.9639. 
36. Ameri A, Heydarirad G, Mahdavi Jafari J, Ghobadi A, Rezaeizadeh H, Choopani R. Medicinal plants contain mucilage used in traditional Persian medicine (TPM). Pharm Biol. 2015;53(4):615-23. doi: 10.3109/13880209.2014.928330. 
37. Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-based gums and mucilages applications in pharmacology and nanomedicine: a review. Molecules. 2021;26(6):1770. doi: 10.3390/molecules26061770. 
38. Hamedi A, Yousefi G, Farjadian S, Bour Bour MS, Parhizkar E. Physicochemical and immunomodulatory properties of gum exudates obtained from Astragalus myriacanthus and some of its isolated carbohydrate biopolymers. Iran J Pharm Res. 2017;16(4):1520-30.