Anti-influenza and anti-inflammatory effects of green tea (Camellia sinensis L.) extract

Document Type : Original Article


1 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

2 Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq

3 Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran


Background and aims: Pulmonary complications due to influenza A virus infection, in addition to being caused by the replication of the virus, are partly due to the excess production of pro-inflammatory cytokines. It is therefore helpful to seek out compounds to control the excess production of these cytokines along with administration of antiviral drugs. In this study, the effect of green tea (Camellia sinensis L.) extract on the replication of influenza A (H1N1) virus and on gene expression levels of pro-inflammatory cytokines was studied in Madin-Darby canine kidney (MDCK) cells.
Methods: In this experimental study, hydroalcoholic extract of C. sinensis leaf was prepared with maceration method. In vitro anti-influenza virus activity of the extract was evaluated by performing hemagglutination (HA) and 50 % tissue culture infectious dose (TCID50) assays at 24 and 48 hours of incubation. The gene expression levels of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL- 1β) and IL-6 were studied using real-time Polymerase chain reaction (PCR) 24 hours after treatment.
Results: Camellia sinensis extract treatment caused a significant decrease in viral titer compared to control virus in a dose-dependent manner (P < 0.05). The gene expression levels of IL-6, TNF-α and IL-1β after treatment with the extract decreased significantly compared to the virus control (P < 0.05).
Conclusion: Due to its antiviral effect and reducing the gene expression of pro-inflammatory cytokines, C. sinensis extract can be used as an adjunctive drug along with current antiviral drugs in severe influenza infection as well as other viral infections, such as coronavirus, to minimize lung damage due to inflammation.


1. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, et al. Global mortality associated with seasonal influenza epidemics: new burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019;9(2):020421. doi: 10.7189/jogh.09.020421. 
2. Daoud A, Laktineh A, Macrander C, Mushtaq A, Soubani AO. Pulmonary complications of influenza infection: a targeted narrative review. Postgrad Med. 2019;131(5):299-308. doi: 10.1080/00325481.2019.1592400. 
3. Lee N, Wong CK, Chan PK, Chan MC, Wong RY, Lun SW, et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS One. 2011;6(10):e26050. doi: 10.1371/journal.pone.0026050. 
4. Morichi S, Kawashima H, Ioi H, Yamanaka G, Kashiwagi Y, Hoshika A. High production of interleukin-10 and interferon-γ in influenza-associated MERS in the early phase. Pediatr Int. 2012;54(4):536-8. doi: 10.1111/j.1442-200X.2011.03483.x. 
5. Wei F, Gao C, Wang Y. The role of influenza A virus-induced hypercytokinemia. Crit Rev Microbiol. 2022;48(2):240-56. doi: 10.1080/1040841x.2021.1960482. 
6. Guzmán-Beltrán S, Herrera MT, Torres M, Gonzalez Y. CD33 is downregulated by influenza virus H1N1pdm09 and induces ROS and the TNF-α, IL-1β, and IL-6 cytokines in human mononuclear cells. Braz J Microbiol. 2022;53(1):89-97. doi: 10.1007/s42770-021-00663-4. 
7. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004;202(2):145-56. doi: 10.1002/path.1491. 
8. Price GE, Huang L, Ou R, Zhang M, Moskophidis D. Perforin and Fas cytolytic pathways coordinately shape the selection and diversity of CD8 + -T-cell escape variants of influenza virus. J Virol. 2005;79(13):8545-59. doi: 10.1128/ jvi.79.13.8545-8559.2005. 
9. Kwok HH, Poon PY, Fok SP, Ying-Kit Yue P, Mak NK, Chan MC, et al. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells. Sci Rep. 2016;6:18941. doi: 10.1038/ srep18941. 
10. Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of tea (Camellia sinensis) and its active constituents in cosmetics. Molecules. 2019;24(23):4277. doi: 10.3390/ molecules24234277. 
11. Rubab S, Rizwani GH, Durrani AI, Liaqat I, Zafar U, Mahjabeen, et al. Phytochemical and pharmacological potential of Camellia sinensis L. Pak J Zool. 2022:1-10. doi: 10.17582/journal.pjz/20210815170852. 
12. Governa P, Manetti F, Miraldi E, Biagi M. Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. Eur Food Res Technol. 2022;248(1):119-28. doi: 10.1007/s00217-021- 03864-1. 
13. Bora P, Bora LC. Microbial antagonists and botanicals mediated disease management in tea, Camellia sinensis (L.) O. Kuntze: an overview. Crop Prot. 2021;148:105711. doi: 10.1016/j.cropro.2021.105711. 
14. Nasri H, Ahmadi A, Baradaran A, Nasri P, Hajian S, Pour- Arian A, et al. A biochemical study on ameliorative effect of green tea (Camellia sinensis) extract against contrast media induced acute kidney injury. J Renal Inj Prev. 2014;3(2):47-9. doi: 10.12861/jrip.2014.16. 
15. Barreira S, Moutinho C, Silva AMN, Neves J, Seo EJ, Hegazy MEF, et al. Phytochemical characterization and biological activities of green tea (Camellia sinensis) produced in the Azores, Portugal. Phytomed Plus. 2021;1(1):100001. doi: 10.1016/j.phyplu.2020.100001. 
16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: 10.1016/0022- 1759(83)90303-4. 
17. Kim Y, Narayanan S, Chang KO. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res. 2010;88(2):227-35. doi: 10.1016/j.antiviral.2010.08.016. 
18. Moradi MT, Karimi A, Rafieian-Kopaei M, Fotouhi F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb Pathog. 2017;110:42-9. doi: 10.1016/j.micpath.2017.06.014. 
19. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493-7. 
20. Aghaei F, Moradi MT, Karimi A. Punicalagin inhibits pro-inflammatory cytokines induced by influenza A virus. Eur J Integr Med. 2021;43:101324. doi: 10.1016/j. eujim.2021.101324. 
21. Isaacs CE, Wen GY, Xu W, Jia JH, Rohan L, Corbo C, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008;52(3):962- 70. doi: 10.1128/aac.00825-07. 
22. Weber JM, Ruzindana-Umunyana A, Imbeault L, Sircar S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res. 2003;58(2):167-73. doi: 10.1016/ s0166-3542(02)00212-7. 
23. Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV- 1). Antiviral Res. 2002;53(1):19-34. doi: 10.1016/s0166- 3542(01)00189-9. 
24. Mahmood MS, Mártinez JL, Aslam A, Rafique A, Vinet R, Laurido C, et al. Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). Afr J Tradit Complement Altern Med. 2016;13(2):176-84. doi: 10.4314/ajtcam.v13i2.21. 
25. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al. Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): an in vitro study in MDCK cells. Virol J. 2012;9:44. doi: 10.1186/1743-422x-9-44. 
26. Khalili N, Karimi A, Moradi MT, Shirzad H. In vitro immunomodulatory activity of celastrol against influenza A virus infection. Immunopharmacol Immunotoxicol. 2018;40(3):250-5. doi: 10.1080/08923973.2018.1440591. 
27. de Lima Mota MA, Landim JS, Targino TS, da Silva SF, da Silva SL, Pereira MR. Evaluation of the anti-inflammatory and analgesic effects of green tea (Camellia sinensis) in mice. Acta Cir Bras. 2015;30(4):242-6. doi: 10.1590/s0102- 865020150040000002. 
28. Wang Q, Huang J, Zheng Y, Guan X, Lai C, Gao H, et al. Selenium-enriched oolong tea (Camellia sinensis) extract exerts anti-inflammatory potential via targeting NF-κB and MAPK pathways in macrophages. Food Sci Hum Wellness. 2022;11(3):635-42. doi: 10.1016/j.fshw.2021.12.020.