An updated review of the therapeutic anti-inflammatory effects of frankincense

Document Type : Review Article

Authors

Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Abstract

Inflammatory responses are the consequences of infection, injury, and tissue dysfunctions. In general, these responses associate with the inception of several diseases such as rheumatoid arthritis, diabetes, allergy, asthma, cancer, epilepsy, and Alzheimer's disease. To enhance such responses a number of synthetic drugs are widely used, including steroidal/non-steroidal components, antibodies, and cytokine inhibitors. However, prolonged use of these components may generate some side effects, including the malfunction of digestive tract, liver intoxication, kidney damage, and cardiovascular disorders. Therefore, alternative application of natural compounds, such as herbal components, against inflammatory responses might be safer and more effective. Frankincense is a gum resin with potential therapeutic effects on various diseases with signs of inflammation. Therefore, frankincense can decrease the indications of numerous illnesses with the least side effects. The identification of critical active constituents in frankincense may be useful for the development of new components with desired biological effects. In this review, the potential therapeutic effects of frankincense will be described based on its anti-inflammatory effects.

Keywords

Main Subjects


1. Yeung YT, Aziz F, Guerrero-Castilla A, Arguelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 2018;24(14):1449-84.
2. Peesa JP, Yalavarthi PR, Rasheed A, Mandava VBR. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. J Acute Dis. 2016;5(5):364-81.
3. Zhang Y, Yu Y-l, Tian H, Bai R-y, Bi Y-n, Yuan X-m, et al. Evaluation of antiInflammatory activities of a triterpene βelemonic acid in frankincense in vivo and in vitro. Molecules. 2019;24(6):1187.
4. Su S, Duan J, Chen T, Huang X, Shang E, Yu L, et al. Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway. Sci Rep. 2015;5:13668.
5. Cao H, Yu R, Choi Y, Ma Z-Z, Zhang H, Xiang W, et al. Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol Res. 2010;61(6):519-24.
6. Hamidpour R, Hamidpour S, Hamidpour MJ. Frankincense (Boswellia Species): the novel phytotherapy for drug targeting in cancer. Arch Cancer Res. 2016;4:1.
7. Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72(12):1100-16.
8. Bekana D, Kebede T, Assefa M, Kassa H. Comparative phytochemical analyses of resins of Boswellia Species (B. papyrifera (Del.) Hochst., B. neglecta S. Moore, and B. rivae Engl.) from Northwestern, Southern, and Southeastern Ethiopia. ISRN Anal Chem. 2014;2014:374678.
9. Atta ur R, Naz H, Fadimatou, Makhmoor T, Yasin A, Fatima N, et al. Bioactive constituents from Boswellia papyrifera. J Nat Prod. 2005;68(2):189-93.
10. Zhou JY, Cui R. [Chemical components of Boswellia carterii]. Yao Xue Xue Bao. 2002;37(8):633-5.
11. Moussaieff A, Mechoulam R. Boswellia resin: from religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. J Pharm and Pharmacolo. 2009;61(10):1281-93.
12. Du Z, Liu Z, Ning Z, Liu Y, Song Z, Wang C, et al. Prospects of boswellic acids as potential pharmaceutics. Planta Med. 2015;81(4):259-71.
13. Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. 2011;73(3):255-61.
14. Banno N, Akihisa T, Yasukawa K, Tokuda H, Tabata K, Nakamura Y, et al. Antiinflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol. 2006;107(2):249-53.
15. Ammon HP. Boswellic acids and their role in chronic inflammatory diseases. Adv Exp Med Biol. 2016;928:291-327.
16. Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci. 2019;20(17):4101.
17. Al-Harrasi A, Csuk R, Khan A, Hussain J. Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and incensole acetate in genus Boswellia. Phytochemistry. 2019;161:28-40.
18. Moussaieff A, Shein NA, Tsenter J, Grigoriadis S, Simeonidou C, Alexandrovich AG, et al. Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. J Cerebr Blood F Met. 2008;28(7):1341-52.
19. Camarda L, Dayton T, Di Stefano V, Pitonzo R, Schillaci D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Ann Chim. 2007;97(9):837-44.
20. Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T. Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinases. J Immunol. 2005;174(1):498-506.
21. Ammon HP, Mack T, Singh GB, Safayhi H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Med. 1991;57(3):203-7.
22. Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HP. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther. 1992;261(3):1143-6.
23. Siemoneit U, Hofmann B, Kather N, Lamkemeyer T, Madlung J, Franke L, et al. Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem Pharmacol. 2008;75(2):503-13.
24. Altmann A, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Boswellic acids activate p42(MAPK) and p38 MAPK and stimulate Ca(2+) mobilization. Biochem Biophys Res Commun. 2002;290(1):185-90.
25. Su S, Duan J, Chen T, Huang X, Shang E, Yu L, et al. Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway. Sci Rep. 2015;5:13668.
26. Altmann A, Poeckel D, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes. Br J pharmacol. 2004;141(2):223-32.
27. Ossipov MH. The perception and endogenous modulation of pain. Scientifica (Cairo). 2012;2012:561761-.
28. Dray A. Inflammatory mediators of pain. Br J Anaesth. 1995;75(2):125-31.
29. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JAJ. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39(3):240-55.
30. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6827):471.
31. Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet TJT. Acetylboswellic acids inhibit lipopolysaccharidemediated TNF-α induction in monocytes by direct interaction with IκB kinases. J Immunol. 2005;174(1):498-506.
32. Li X-J, Yang Y-J, Li Y-S, Zhang WK, Tang H-BJJoe. α-Pinene, linalool, and 1- octanol contribute to the topical antiinflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol. 2016;179:22-6.
33. Hu D, Wang C, Li F, Su S, Yang N, Yang Y, et al. A combined water extract of frankincense and Myrrh alleviates neuropathic pain in mice via modulation of TRPV1. Neural Plast. 2017;2017:3710821.
34. Alluri VK, Kundimi S, Sengupta K, Golakoti T, Kilari EK. An antiinflammatory composition of Boswellia serrata resin extracts alleviates pain and protects cartilage in monoiodoacetateinduced osteoarthritis in rats. Evid Based Complement Alternat Med. 2020;2020:7381625.
35. Al-Harrasi A, Ali L, Hussain J, Rehman NU, Mehjabeen, Ahmed M, et al. Analgesic effects of crude extracts and fractions of Omani frankincense obtained from traditional medicinal plant Boswellia sacra on animal models. Asian Pac J Trop Med. 2014;7s1:S485-90.
36. Prabhavathi K, Chandra US, Soanker R, Rani PU. A randomized, double blind, placebo controlled, cross over study to evaluate the analgesic activity of Boswellia serrata in healthy volunteers using mechanical pain model. Indian J Pharmacol. 2014;46(5):475-9.
37. Lampl C, Haider B, Schweiger C. Longterm efficacy of Boswellia serrata in four patients with chronic cluster headache. Cephalalgia.2012;32(9):719-22.
38. Mothana RA. Anti-inflammatory, antinociceptive and antioxidant activities of the endemic Soqotraen Boswellia elongata Balf. f. and Jatropha unicostata Balf. f. in different experimental models. Food chem toxicol. 2011;49(10):2594-9.
39. Chimenti M, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone RJCd, et al. The interplay between inflammation and metabolism in rheumatoid arthritis. 2015;6(9):e1887.
40. Siebert S, Tsoukas A, Robertson J, McInnes IJPr. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67(2):280-309.
41. Mateen S, Zafar A, Moin S, Khan AQ, Zubair SJCCA. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 2016;455:161-71.
42. Etzel R. Special extract of Boswellia serrata (H 15) in the treatment of rheumatoid arthritis. Phytomedicine. 1996;3(1):91-4.
43. Kumar R, Singh S, Saksena AK, Pal R, Jaiswal R, Kumar R. Effect of Boswellia serrata extract on acute inflammatory parameters and tumor necrosis factor-alpha in complete Freund's adjuvant-induced animal model of rheumatoid arthritis. Int J App Basic Med Res. 2019;9(2):100-6.
44. Umar S, Umar K, Sarwar AH, Khan A, Ahmad N, Ahmad S, et al. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine. 2014;21(6):847-56.
45. Klöppel G, Löhr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985;4(2):110-25.
46. Garcia C, Feve B, Ferré P, Halimi S, Baizri H, Bordier L, et al. Diabetes and inflammation: Fundamental aspects and clinical implications. Diabetes Metabo. 2010;36(5):327-38.
47. Keane KN, Calton EK, Carlessi R, Hart PH, Newsholme PJ. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr. 2017;71(7):904.
48. Reilly SM, Saltiel ARJNRE. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633.
49. Azadmehr A, Ziaee A, Ghanei L, Huseini HF, Hajiaghaee R, Tavakoli-far B, et al. A randomized clinical trial study: antioxidant, anti-hyperglycemic and antihyperlipidemic effects of olibanum gum in type 2 diabetic patients. Iran J Pharm Res. 2014;13(3):1003.
50. Ammon HPT. Boswellic extracts and 11- keto-ss-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. Phytomedicine. 2019;63:153002.
51. Mehrzadi S, Tavakolifar B, Huseini HF, Mosavat SH, Heydari M. The effects of Boswellia serrata gum resin on the blood glucose and lipid profile of diabetic patients: a double-blind randomized placebo-controlled clinical trial. J EvidBased Integr Med. 2018;23:2515690x18772728.
52. Khalili N, Fereydoonzadeh R, Mohtashami R, Mehrzadi S, Heydari M, Huseini HF. Silymarin, Olibanum, and Nettle, A. Mixed herbal formulation in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. EvidBased Complementary Altern 2017;22(4):603-8.
53. Ahangarpour A, Heidari H, Fatemeh RA, Pakmehr M, Shahbazian H, Ahmadi I, et al. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients. J Diabetes Metab Disord. 2014;13(1):29.
54. Shehata AM, Quintanilla-Fend L, Bettio S, Singh CB, Ammon HP. Prevention of multiple low-dose streptozotocin (MLDSTZ) diabetes in mice by an extract from gum resin of Boswellia serrata. Phytomedicine. 2011;18(12):1037-44.
55. Franić Z, Franić Z, Vrkić N, Gabaj NN, Petek I. Effect of extract from Boswellia serrata gum resin on decrease of GAD65 autoantibodies in a patient with Latent Autoimmune Diabetes in Adults. Altern Ther Health M. 2020.
56. Kavitha JV, Rosario JF, Chandran J, Anbu P, Bakkiyanathan. Hypoglycemic and other related effects of Boswellia glabra in alloxan-induced diabetic rats. Indian J Physiol Pharmacol. 2007;51(1):29-39.
57. Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostag Oth Lipid M. 2017;131:1-8.
58. Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10(4):365- 81.
59. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.
60. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol. 2004;14(6):433-9.
61. Mantovani A, Allavena P, Sica A, Balkwill FJN. Cancer-related inflammation. Nature. 2008;454(7203):436. 62. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798.
63. Karin MJN. Nuclear factor-κB in cancer development and progression. Nature. 2006;441(7092):431.
64. Dhillon AS, Hagan S, Rath O, Kolch WJO. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279.
65. Roy NK, Deka A, Bordoloi D, Mishra S, Kumar AP, Sethi G, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016;377(1):74-86.
66. Kunnumakkara AB, Nair AS, Sung B, Pandey MK, Aggarwal BBJ. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res. 2009;7(1):118-28.
67. Li W, Liu J, Fu W, Zheng X, Ren L, Liu S, et al. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J Exp Clin Cancer Res. 2018;37(1):132.
68. Schmiech M, Lang SJ, Werner K, Rashan LJ, Syrovets T, Simmet T. Comparative analysis of pentacyclic triterpenic acid compositions in oleogum resins of different Boswellia Species and their in vitro cytotoxicity against reatment-resistant human breast cancer cells. Molecules. 2019;24(11).
69. Hakkim FL, Bakshi HA, Khan S, Nasef M, Farzand R, Sam S, et al. Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes. Oncotarget. 2019;10(37):3472-90.
70. Ni X, Suhail MM, Yang Q, Cao A, Fung KM, Postier RG, et al. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. BMC Complem Altern M. 2012;12:253.
71. Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, et al. Acetyl-11-keto-βboswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol. 2020.
72. Barbarisi M, Barbarisi A, De Sena G, Armenia E, Aurilio C, Libutti M, et al. Boswellic acid has anti-inflammatory effects and enhances the anticancer activities of Temozolomide and Afatinib, an irreversible ErbB family blocker, in human glioblastoma cells. Phytother Res. 2019;33(6):1670-82.
73. Parr C, Ali AY. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J Transl Med. 2018;16(1):281.
74. Badria FA, Mohammed EA, El-Badrawy MK, El-Desouky MJA, Therapies C. Natural leukotriene inhibitor from Boswellia: a potential new alternative for treating bronchial asthma. Altern Complement Ther. 2004;10(5):257-65.
75. Barnig C, Frossard N, Levy BDJP, therapeutics. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther. 2018;186:98-113.
76. Gupta I, Gupta V, Parihar A, Gupta S, Lüdtke R, Safayhi H, et al. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a doubleblind, placebo-controlled, 6-week clinical study. Eur J Med Res. 1998;3(11):511-4.
77. Koeberle A, Henkel A, Verhoff M, Tausch L, König S, Fischer D, et al. Triterpene acids from frankincense and semi-synthetic derivatives that inhibit 5-lipoxygenase and cathepsin G. Molecules. 2018;23(2):506.
78. Henderson JWJ. Role of leukotrienes in asthma. Ann Allergy. 1994;72(3):272-8.
79. Yugandhar P, Rao KM, Sengupta K. A novel herbal composition containing extracts of Boswellia serrata gum resin and Aegle marmelos fruit alleviates symptoms of asthma in a placebo controlled doubleblind clinical study. Phytother Res 2018;32(1):140-50.
80. Gupta I, Gupta V, Parihar A, Gupta S, Lüdtke R, Safayhi H, et al. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a doubleblind, placebo-controlled, 6-week clinical study. Eur J Med Res. 1998;3(11):511-4.
81. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Lamb BTJAs, Research DT, et al. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement. 2018. 6;4:575-590.
82. Toral-Rios D, Franco-Bocanegra D, RosasCarrasco O, Mena-Barranco F, CarvajalGarcía R, Meraz-Ríos MA, et al. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer’s disease: a pilot study. Front Cell Neurosci. 2015;9:148.
83. Darweesh SK, Wolters FJ, Ikram MA, de Wolf F, Bos D, Hofman AJAs, et al. Inflammatory markers and the risk of dementia and Alzheimer's disease: A metaanalysis. Alzheimers Dement. 2018;14(11):1450-9.
84. Rojas‐Gutierrez E, Muñoz‐Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, et al. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse. 2017;71(10):e21990.
85. Zaker SR, Beheshti S, Aghaie R, Noorbakhshnia M. Effect of olibanum on a rat model of Alzheimer’s disease induced by intracerebroventricular injection of streptozotocin. Physiol Pharmacol. 2015;18(4):477-89.
86. Beheshti S, Karimi B. Frankincense improves memory retrieval in rats treated with lipopolysaccharide. J Herbmed Pharmacol. 2016;5(1):12-6.
87. Beheshti S, Aghaie R. Therapeutic effect of frankincense in a rat model of Alzheimer's disease. Avicenna J Phytomed. 2016;6(4):468-75. 88. Yassin N, El-Shenawy S, Mahdy K, Gouda N, Marrie AE-F, Farrag AR, et al. Effect of Boswellia serrata on Alzheimer's disease induced in rats. J Arab SocMed Res. 2013;8(1):1-11.
89. Gomaa AA, Makboul RM, Al-Mokhtar MA, Nicola MA. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3beta activity, oxidative stress and pro-inflammatory cytokines. Biomed pharmacother. 2019;109:281-92.
90. Wei C, Fan J, Sun X, Yao J, Guo Y, Zhou B, et al. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic Biol Med. 2020;150:96-108.
91. Bakthira H, Awadh Ali NA, Arnold N, Teichert A, Wessjohann L. Anticholinesterase activity of endemic plant extracts from Soqotra. Afr J Tradit Complement Altern Med. 2011;8(3):296-9.
92. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883-90.
93. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459-72.
94. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31-40.
95. Hosny EN, Elhadidy ME, Sawie HG, Kilany A, Khadrawy YA. Effect of frankincense oil on the neurochemical changes induced in rat model of status epilepticus. Clin Phytoscience. 2020;6(1):3.
96. Brillatz T, Ferreira Queiroz E, Marcourt L, Jacmin M, Crawford AD, Wolfender JL. Anticonvulsant agents from Boswellia sacra identified by zebrafish bioassayguided fractionation. Planta Med. 2016;82(S 01):P483.
97. Senghani M. K PPM, Sagar G. Vidya. Anticonvulsant activity of boswellic acids against maximal electroshock-induced convulsive rats and picrotoxin-induced convulsive mice. Res J Pharmacon Phytochem. 2012;4(6):318-21.
98. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428.
99. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465.
100. Lazaros G, Antonatou K, Vassilopoulos DJFim. The therapeutic role of interleukin-1 inhibition in idiopathic recurrent pericarditis: current evidence and future challenges. Front Med. 2017;4:78.
101. Taylor SA, Vittorio JM, Martinez M, Fester KA, Lagana SM, Lobritto SJ, et al. Anakinra‐induced acute liver failure in an adolescent patient with still's disease. Pharmacotherapy. 2016;36(1):e1-4.
102. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas AJG. Mechanisms of damage to the gastrointestinal tract from nonsteroidal antiinflammatory drugs. Gastroenterology. 2018;154(3):500-14.
103. Harirforoosh S, Asghar W, Jamali FJJoP, Sciences P. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013;16(5):821-47.
104. Rider P, Carmi Y, Cohen IJIjocb. Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol. 2016;2016.
105. Orhan IEJBB. Pharmacognosy: Science of natural products in drug discovery. Bioimpacts. 2014;4(3):109.
106. Chevrier MR, Ryan AE, Lee DY-W, Zhongze M, Wu-Yan Z, Via CSJCDLI. Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clin Diagn Lab Immunol. 2005;12(5):575-80.
107. Ammon HPT. Boswellic acids and their role in chronic inflammatory diseases. Adv Exp Med Biol. 2016;928:291-327.
108. Umar S, Umar K, Sarwar AHMG, Khan A, Ahmad N, Ahmad S, et al. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine.2014;21(6):847-56.