Comparison of protective effects of omega3 fish oil and aqueous extract of Glycyrrhiza glabra root on biochemical factors and liver tissue changes induced by thioacetamide in male rats

Document Type : Original Article


1 Department of Biology , Fars Science and Research Branch,Islamic Azad University ,Fars ,Iran 2-Department of Biology,Shiraz Branch,Islamic Azad University, Shiraz,Iran

2 Biology Dept., Kazerun Branch, Islamic Azad University, Kazerun, I.R. Iran.


Background and aims: Thioacetamide can lead to liver cirrhosis and hepatocarcinoma. This study was aimed to evaluate the ability of omega3 fish oil and Glycyrrhiza glabra aqueous extract to attenuate biochemical factors and liver tissue changes induced by thioacetamide.

Methods: In this experimental study, 63 wistar male rats were divided into 9 groups. Control group, Sham group received 0.4ml olive oil orally per day for 3 months. Thioacetamide group received 150 mg/kg of TAA intraperitoneally in a single dose for 3 months. Experimental groups 1, 2, 3, 4, 5 and 6 received 100, 200, 300 mg/kg of omega3 fish oil and aqueous extract of Glycyrrhiza glabra root orally per day for 3 months and 150 mg/kg of TAA intraperitoneally in a single dose for 3 months. The provided blood samples were tested for serum levels of bilirubin, albumin, and total protein. The pathological examination of hepatic tissue samples was done after hematoxylin and eosin staining.

Results: Treatment with 100 mg/kg of omega3 fish oil (0.06±0.013) significant reduced the serum level of billirubin comparing with thioacetamide group (0.38±0.015). Treatment with the aqueous extract of Glycyrrhiza glabra root at all doses (0.37±0.034) (0.34±0.027) (0.15±0.028) showed no significant difference in the serum level of billirubin comparing with thioacetamide group (0.38±0.015). Treatment with the omega3 fish oil (4.40±0.02) (4.32±0.10) (4.34±0.10) and aqueous extract of Glycyrrhiza glabra root at all doses (4.33±0.06) (4.31±0.5) (4.20±0.07) significant reduced the serum level of albumin comparing with thioacetamide group (4.70±0.00). The mean levels of total protein showed no significant difference in the experimental groups (8.77±0.31) (8.53±0.20) (8.63±0.24) (8.58±0.05) (8.57±0.10) (7.92±0.21) comparing with thioacetamide group (8.56±0.08). In all experimental groups, the hepatic tissue changes induced by thioacetamide improved which were dose dependent (p <0.05).

Conclusion: The study suggests that biochemical factors and liver tissue changes induced by thioacetamide in male rats can be ameliorated by oral administration of aqueous extract of Glycyrrhiza glabra root and omega3 fish oil.


Main Subjects

1. Akanitapichat P, Phraibung K, Nuchklang K, Prompitakkul S. Antioxidant and hepatoprotective activities of five eggplant varieties. Food Chem Toxicol. 2010; 48(10): 3017-21.
2. Zaragoza A, Andres D, Sarrion D, Cascales M. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment in rats. Inducibility of FAD monooxygenase system and age effect. Chem Biol Interact. 2000; 124(2): 87-101.
3. Sanz N, Diez-Fernandez C, Andres D, Cascales M. Hepatotoxicity and aging: endogenous antioxidant systems in hepatocytes from 2, 6, 12, 18 and 30-month-old rats following a necrogenic dose of thioacetamide. Biochim Biophys Acta. 2002; 1587(1): 12-20.
4. Chilakapati J, Korrapati MC, Hill RA, Warbritton A, Latendresse JR, Mehendale HM. Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology. 2007; 230(2-3): 105-16.
5. Andres D, Sanchez-Reus I, Bautista M, Cascales M. Depletion of Kupffer cell function by gadolinium chloride attenuates thioacetamide-induced hepatotoxicity. Biochem Pharmacol. 2003; 66(6): 917-26.
6. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, et al. Omega3 polyunsaturated fatty acid has an antioxidant effects via the Nrf/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2013; 430(1): 225-30.
7. Scorletti E, Byrne CD. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr. 2013; 33: 231-48.
8. Ogawa S, Abe T, Nako K, Okamura M, Senda M, Sakamoto T, et al. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes. Tohoku J Exp Med. 2013; 231(1): 63-74.
9. Abeywardena MY, Patten GS. Role of omega3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors. Endocr Metab Immune Disord Drug Targets. 2011; 11(3): 232-46.
10. Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol. 2003; 13(4): 267-71.
11. Freeman MP. Omega-3 fatty acids in psychiatry: A review. Ann Clin Psychiatry. 2000; 12(3): 159-65.
12. Simopoulos AP. Omega3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002; 21(6): 495-505.
13. De Vizia B, Raia V, Spano C, Pavlidis C, Coruzzo A, Alessio M. Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. JPEN J Parenter Enteral Nutr. 2003; 27(1): 52-7.
14. Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol. 2008; 153 Suppl 1: S200-15.
15. Akahoshi T, Hashizume M, Tanoue K, Shimabukuro R, Gotoh N, Tomikawa M, et al. Role of the spleen in liver fibrosis in rats may be mediated by transforming growth factor beta-1. J Gastroenterol Hepatol. 2002; 17(1): 59-65.
16. Wendel M, Heller AR. Anticancer actions of omega-3 fatty acids-current state and future perspectives. Anticancer Agents Med Chem. 2009; 9(4): 457-70.
17. Li CC, Yang HT, Hou YC, Chiu YS, Chiu WC. Dietary fish oil reduces systemic inflammation and ameliorates sepsis-induced liver injury by up-regulating the peroxisome proliferator-activated receptor gamma-mediated pathway in septic mice. J Nutr Biochem. 2014; 25(1): 19-25.
18. Jangale NM, Devarshi PP, Dubal AA, Ghule AE, Koppikar SJ, Bodhankar SL, et al. Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats. Food Chem. 2013; 141(1): 187-95.
19. Kim K, Jung N, Lee K, Choi J, Kim S, Jun J, et al. Dietary omega3 polyunsaturated fatty acids attenuate hepatic ischemia/reperfusion injury in rats by modulating toll-like receptor recruitment into lipid rafts. Clin Nutr. 2013; 32(5): 855-62.
20. Rastogi R, Mehrotra B. Compendium of Indian Medicinal Plants published by Central Drug Research Institute. Lucknow and National Institute of Sciences Communication and Information Resources: New Delhi. 1994: 395-8.
21. Fukai T, Baosheng C, Maruno K, Migakawa Y, Konoshi M. An isopernylated flavonone from Glycyrrhiza glabra and re-assay of liquoric phenols. Phytochemistry. 1998; 49(1): 2005-13.
22. Kaur R, Arora S. Chemical constituents and biological activities of Chukrasia tabularis A. Juss: A review. J Med Plants Res. 2009; 3(4): 196-216.
23. Huo HZ, Wang B, Liang YK, Bao YY, Gu Y. Hepatoprotective and antioxidant effects of licorice extract against CCl(4)-induced oxidative damage in rats. Int J Mol Sci. 2011; 12(10): 6529-43.
24. Rasool M, Iqbal J, Malik A, Ramzan HS, Qureshi MS, Asif M, et al. Hepatoprotective Effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in Combination: A Possible Synergy. Evid Based Complement Alternat Med. 2014; 2014: 641597.
25. Zheng YF, Wei JH, Fang SQ, Tang YP, Cheng HB, Wang TL, et al. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflata. Molecules. 2015; 20(4): 6273-83.
26. Sirag HM. Biochemical studies on thioacetamide toxicity in male albino rats and the role of tomato juice as an antioxidant. Mansoura J Forensic Med Clin Toxicol. 2007; 15: 90-114.
27. Meganathan M, Madhana Glopal K, Sasikala P, Mohan J, Gowdhaman N, Balamurugan K, et al. Evalution of hepatoprotective effect of omega3-Fatty acid against paracetamol induced liver in albino rats. Global J Pharmacol. 2011; 5(1): 50-3.
28. Renjie L, Shidi S, Changsen S. Protective effect of Glycyrrhiza glabra polysaccharides against tetrachloride-induced liver injury in rats. Afr J Microbiol Res. 2010; 4(16): 1784-7.
29. Bastway Ahmed M, Hasona N, Selemain A. Protective effects of extract from dates (Phoenix dactylifera L.) and ascorbic acid on thioacetamide-induced hepatotoxicity in rats. Iran J Pharm Res. 2010: 193-201.
30. Al Bayaty F, Abdulla M, Hassan MA, Masud M. Wound healing potential by hyaluronate gel in streptozotocin-induced diabetic rats. Sci Res Essays. 2010; 5(18): 2756-60.
31. Kabiri N, Setorki M, Darabi MA. Protective effects of kombucha tea and silimarin against thioacetamide induced hepatic injuries in wistar rats. World Appl Sci J. 2013; 27(4): 524-32.
32. Mangipudy RS, Chanda S, Mehendale HM. Tissue repair response as a function of dose in thioacetamide hepatotoxicity. Environ Health Perspect. 1995; 103(3): 260-7.
33. Okuyama H, Nakamura H, Shimahara Y, Araya S, Kawada N, Yamaoka Y, et al. Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology. 2003; 37(5): 1015-25.
34. Low TY, Leow CK, Salto-Tellez M, Chung MC. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics. 2004; 4(12): 3960-74.
35. Moreira E, Fontana L, Periago JL, Sanchez De Medina F, Gil A. Changes in fatty acid composition of plasma, liver microsomes, and erythrocytes in liver cirrhosis induced by oral intake of thioacetamide in rats. Hepatology. 1995; 21(1): 199-206.
36. Natarajan SK, Thomas S, Ramamoorthy P, Basivireddy J, Pulimood AB, Ramachandran A, et al. Oxidative stress in the development of liver cirrhosis: A comparison of two different experimental models. J Gastroenterol Hepatol. 2006; 21(6): 947-57.
37. Wang CH, Chen YJ, Lee TH, Chen YS, Jawan B, Hung KS, et al. Protective effect of MDL28170 against thioacetamide-induced acute liver failure in mice. J Biomed Sci. 2004; 11(5): 571-8.
38. Ernest KJP, Magdalena K. Fatty acid facts. Part III cardiovascular disease or a fish diet in not fishy. Drug News Perspect. 2008; 21(10): 552.
39. Wardle EN. Ways of treating IgA nephropathies. Saudi J Kidney Dis Transpl. 2000; 11(3): 325-33.
40. Calder PC. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie. 2009; 91(6): 791-5.
41. Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines; sources, receptors, effects, and inducers. Clin Microbiol Rev. 1997; 10: 742-80.
42. Babcock T, Helton WS, Espat NJ. Eicosapentaenoic acid (EPA): An antiinflammatory omega-3 fat with potential clinical applications. Nutrition. 2000; 16(11-12): 1116-8.
43. Atakisi O, Atakisi E, Ozcan A, Karapehlivan M, Kart A. Protective effect of omega-3 fatty acids on diethylnitrosamine toxicity in rats. Eur Rev Med Pharmacol Sci. 2013; 17(4): 467-71.
44. Qiu YD, Wang S, Yang Y, Yan XP. Omega3 polyunsaturated fatty acids promote liver regeneration after 90% hepatectomy in rats. World J Gastroenterol. 2012; 18(25): 3288-95.
45. Wu Z, Qin J, Pu L. Omega-3 fatty acid improves the clinical outcome of hepatectomized patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma. J Biomed Res. 2012; 26(6): 395-9.
46. Kimura M, Moro T, Motegi H, Maruyama H, Sekine M, Okamoto H, et al. In vivo glycyrrhizin accelerates liver regeneration and rapidly lowers serum transaminase activities in 70% partially hepatectomized rats. Eur J Pharmacol. 2008; 579(1-3): 357-64.
47. Kimura M, Inoue H, Hirabayashi K, Natsume H, Ogihara M. Glycyrrhizin and some analogues induce growth of primary cultured adult rat hepatocytes via epidermal growth factor receptors. Eur J Pharmacol. 2001; 431(2): 151-61.
48. Yoshida T, Abe K, Ikeda T, Matsushita T, Wake K, Sato T, et al. Inhibitory effect of glycyrrhizin on lipopolysaccharide and d-galactosamine-induced mouse liver injury. Eur J Pharmacol. 2007; 576(1-3): 136-42.
49. Tripathi M, Singh BK, Kakkar P. Glycyrrhizic acid modulates t-BHP induced apoptosis in primary rat hepatocytes. Food Chem Toxicol. 2009; 47(2): 339-47.
50. Lee JR, Park SJ, Lee HS, Jee SY, Seo J, Kwon YK, et al. Hepatoprotective activity of licorice water extract against cadmium-induced toxicity in rats. Evid Based Complement Alternat Med. 2009; 6(2): 195-201.
51. Kim YM, Kim TH, Kim YW, Yang YM, Ryu DH, Hwang SJ, et al. Inhibition of liver X receptor-alpha-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med. 2010; 49(11): 1722-34.
52. Kim YW, Ki SH, Lee JR, Lee SJ, Kim CW, Kim SC, et al. Liquiritigenin, an aglycone of liquiritin in Glycyrrhizae radix, prevents acute liver injuries in rats induced by acetaminophen with or without buthionine sulfoximine. Chem Biol Interact. 2006; 161(2): 125-38.
53. Nakagawa K, Hosoe K, Hidaka T, Nabae K, Kawabe M, Kitano M. Inhibition by licorice flavonoid oil of glutathione S-transferase-positive foci in the medium-term rat hepatocarcinogenesis bioassay. Nutr Res. 2010; 30(1): 74-81.
54. Maurya SK, Raj K, Srivastava AK. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dsyslipidaemic Syrian golden hamsters. Indian J Clin Biochem. 2009; 24(4): 404-9.
55. Hamza AA. Curcuma longa, Glycyrrhiza glabra, and Moringa oleifera ameliorate diclofenac-induced hepatoxicity in rats. Am J Pharmacol Toxicol. 2007; 2(2): 80-8.
56. Jeong HG, You HJ, Park SJ, Moon AR, Chung YC, Kang SK, et al. Hepatoprotective effects of 18 beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol Res. 2002; 46(3): 221-7.
57. Rahman S, Sultana S. Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in wistar rats. Chem Biol Interact. 2006; 160(1): 61-9.